Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 943
Filtrar
1.
Virol J ; 20(1): 304, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115107

RESUMO

BACKGROUND: Human T-lymphotropic virus 1 (HTLV-1) is associated with the development of several pathologies and chronic infection in humans. The inefficiency of the available treatments and the challenge in developing a protective vaccine highlight the need to produce effective immunotherapeutic tools. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ) plays an important role in the HTLV-1 persistence, conferring a survival advantage to infected cells by reducing the HTLV-1 proteins expression, allowing infected cells to evade immune surveillance, and enhancing cell proliferation leading to increased proviral load. METHODS: We have generated a recombinant Modified Virus Vaccinia Ankara (MVA-HBZ) and a plasmid DNA (pcDNA3.1(+)-HBZ) expressing a multiepitope protein based on peptides of HBZ to study the immunogenic potential of this viral-derived protein in BALB/c mice model. Mice were immunized in a prime-boost heterologous protocol and their splenocytes (T CD4+ and T CD8+) were immunophenotyped by flow cytometry and the humoral response was evaluated by ELISA using HBZ protein produced in prokaryotic vector as antigen. RESULTS: T CD4+ and T CD8+ lymphocytes cells stimulated by HBZ-peptides (HBZ42-50 and HBZ157-176) showed polyfunctional double positive responses for TNF-α/IFN-γ, and TNF-α/IL-2. Moreover, T CD8+ cells presented a tendency in the activation of effector memory cells producing granzyme B (CD44+High/CD62L-Low), and the activation of Cytotoxic T Lymphocytes (CTLs) and cytotoxic responses in immunized mice were inferred through the production of granzyme B by effector memory T cells and the expression of CD107a by CD8+ T cells. The overall data is consistent with a directive and effector recall response, which may be able to operate actively in the elimination of HTLV-1-infected cells and, consequently, in the reduction of the proviral load. Sera from immunized mice, differently from those of control animals, showed IgG-anti-HBZ production by ELISA. CONCLUSIONS: Our results highlight the potential of the HBZ multiepitope protein expressed from plasmid DNA and a poxviral vector as candidates for therapeutic vaccine.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Vacinas de DNA , Camundongos , Humanos , Animais , Linfócitos T CD8-Positivos , Granzimas/genética , Fator de Necrose Tumoral alfa , Vacinas de DNA/genética , Proteínas Virais/metabolismo , Vírus Vaccinia/genética , DNA , Fatores de Transcrição de Zíper de Leucina Básica , Proteínas dos Retroviridae/genética
2.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834255

RESUMO

The human T-cell leukemia virus type 1 (HTLV-1) is the only known human oncogenic retrovirus. HTLV-1 can cause a type of cancer called adult T-cell leukemia/lymphoma (ATL). The virus is transmitted through the body fluids of infected individuals, primarily breast milk, blood, and semen. At least 5-10 million people in the world are infected with HTLV-1. In addition to ATL, HTLV-1 infection can also cause HTLV-I-associated myelopathy (HAM/TSP). ATL is characterized by a low viral expression and poor prognosis. The oncogenic mechanism triggered by HTLV-1 is extremely complex and the molecular pathways are not fully understood. However, viral regulatory proteins Tax and HTLV-1 bZIP factor (HBZ) have been shown to play key roles in the transformation of HTLV-1-infected T cells. Moreover, several studies have shown that the final fate of HTLV-1-infected transformed Tcell clones is the result of a complex interplay of HTLV-1 oncogenic protein expression with cellular transcription factors that subvert the cell cycle and disrupt regulated cell death, thereby exerting their transforming effects. This review provides updated information on the mechanisms underlying the transforming action of HTLV-1 and highlights potential therapeutic targets to combat ATL.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Adulto , Feminino , Humanos , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Proteínas dos Retroviridae/genética , Proteínas dos Retroviridae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Carcinogênese , Transformação Celular Neoplásica/genética
3.
PLoS Pathog ; 19(6): e1011459, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37327244

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic cause of adult T-cell leukemia/lymphoma (ATL) and encodes a viral oncoprotein (Hbz) that is consistently expressed in asymptomatic carriers and ATL patients, suggesting its importance in the development and maintenance of HTLV-1 leukemic cells. Our previous work found Hbz protein is dispensable for virus-mediated T-cell immortalization but enhances viral persistence. We and others have also shown that hbz mRNA promotes T-cell proliferation. In our current studies, we evaluated the role of hbz mRNA on HTLV-1-mediated immortalization in vitro as well as in vivo persistence and disease development. We generated mutant proviral clones to examine the individual contributions of hbz mRNA, hbz mRNA secondary structure (stem-loop), and Hbz protein. Wild-type (WT) and all mutant viruses produced virions and immortalized T-cells in vitro. Viral persistence and disease development were also evaluated in vivo by infection of a rabbit model and humanized immune system (HIS) mice, respectively. Proviral load and sense and antisense viral gene expression were significantly lower in rabbits infected with mutant viruses lacking Hbz protein compared to WT or virus with an altered hbz mRNA stem-loop (M3 mutant). HIS mice infected with Hbz protein-deficient viruses showed significantly increased survival times compared to animals infected with WT or M3 mutant virus. Altered hbz mRNA secondary structure, or loss of hbz mRNA or protein, has no significant effect on T-cell immortalization induced by HTLV-1 in vitro; however, the Hbz protein plays a critical role in establishing viral persistence and leukemogenesis in vivo.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Humanos , Camundongos , Coelhos , Animais , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas dos Retroviridae/genética , Proteínas dos Retroviridae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Provírus/genética
4.
Biochem Biophys Res Commun ; 657: 43-49, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-36972660

RESUMO

Adult T-cell leukemia (ATL) is a peripheral T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). Microsatellite instability (MSI) has been observed in ATL cells. Although MSI results from impaired mismatch repair (MMR) pathway, no null mutations in the genes encoding MMR factors are detectable in ATL cells. Thus, it is unclear whether or not impairment of MMR causes the MSI in ATL cells. HTLV-1 bZIP factor (HBZ) protein interacts with numerous host transcription factors and significantly contributes to disease pathogenesis and progression. Here we investigated the effect of HBZ on MMR in normal cells. The ectopic expression of HBZ in MMR-proficient cells induced MSI, and also suppressed the expression of several MMR factors. We then hypothesized that the HBZ compromises MMR by interfering with a transcription factor, nuclear respiratory factor 1 (NRF-1), and identified the consensus NRF-1 binding site at the promoter of the gene encoding MutS homologue 2 (MSH2), an essential MMR factor. The luciferase reporter assay revealed that NRF-1 overexpression enhanced MSH2 promoter activity, while co-expression of HBZ reversed this enhancement. These results supported the idea that HBZ suppresses the transcription of MSH2 by inhibiting NRF-1. Our data demonstrate that HBZ causes impaired MMR, and may imply a novel oncogenesis driven by HTLV-1.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Adulto , Humanos , Vírus Linfotrópico T Tipo 1 Humano/genética , Reparo de Erro de Pareamento de DNA , Proteínas dos Retroviridae/genética , Proteínas dos Retroviridae/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Leucemia-Linfoma de Células T do Adulto/patologia
5.
mBio ; 13(6): e0237122, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36226957

RESUMO

The regulatory function of many bacterial small RNAs (sRNAs) requires the binding of the RNA chaperone Hfq to the 3' portion of the sRNA intrinsic terminator, and therefore sRNA signaling might be regulated by modulating its terminator. Here, using a multicopy screen developed with the terminator of sRNA SgrS, we identified an sRNA gene (cyaR) and three protein-coding genes (cspD, ygjH, and rof) that attenuate SgrS termination in Escherichia coli. Analyses of CyaR and YgjH, a putative tRNA binding protein, suggested that the CyaR activity was indirect and the effect of YgjH was moderate. Overproduction of the protein attenuators CspD and Rof resulted in more frequent readthrough at terminators of SgrS and two other sRNAs, and regulation by SgrS of target mRNAs was reduced. The effect of Rof, a known inhibitor of Rho, was mimicked by bicyclomycin or by a rho mutant, suggesting an unexpected role for Rho in sRNA termination. CspD, a member of the cold shock protein family, bound both terminated and readthrough transcripts, stabilizing them and attenuating termination. By RNA sequencing analysis of the CspD overexpression strain, we found global effects of CspD on gene expression across some termination sites. We further demonstrated effects of endogenous CspD under slow growth conditions where cspD is highly expressed. These findings provided evidence of changes in the efficiency of intrinsic termination, confirming this as an additional layer of the regulation of sRNA signaling. IMPORTANCE Growing evidence suggests that the modulation of intrinsic termination and readthrough of transcription is more widespread than previously appreciated. For small RNAs, proper termination plays a critical role in their regulatory function. Here, we present a multicopy screen approach to identify factors that attenuate small RNA termination and therefore abrogate signaling dependent on the small RNA. This study highlights a new aspect of regulation of small RNA signaling as well as the modulation of intrinsic termination.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Pequeno RNA não Traduzido , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Proteínas dos Retroviridae/genética , Proteínas dos Retroviridae/metabolismo
6.
Infect Genet Evol ; 103: 105337, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835355

RESUMO

Background HTLV-1-associated myelopathy (HAM/TSP) is a progressive neurodegenerative inflammatory condition of HTLV-1 infection. Viral-host interactions are a significant contributor to the symptoms of HTLV-1-associated diseases. Therefore, in this study, the expression of the main regulatory viral factors and proviral load (PVL) and two host transcription molecules were evaluated in HAM/TSP patients. Materials and methods The study population included 17 HAM/TSP patients, 20 asymptomatic carriers (ACs), and 19 healthy controls (HCs). RNA and DNA were extracted from PBMCs for assessment of the gene expressions and PVL assessment using RT-qPCR and TaqMan method. Results HTLV-1-PVL was higher in HAM/TSPs (395.80 ± 99.69) than ACs (92.92 ± 29.41) (P = 0.001). The Tax expression in HAM/TSPs (7.8 ± 5.7) was strongly higher than ACs (0.06 ± 0.04) (P = 0.02), while HTLV-1-HBZ was only increased around three times in HAM/TSPs (3.17), compared to ACs (1.20) and not significant. The host IRF1 expression in HAM/TSPs (0.4 ± 0.31) was higher than ACs (0.09 ± 0.05) (P = 0.02) and also HCs (0.16 ± 0.07) (P = 0.5), but lower in ACs than HCs (p = 0.01). Although, in HAM/TSPs (0.13 ± 0.09) and ACs (0.03 ± 0.02) CCNA-2 expression was statistically fewer than HCs (0.18 ± 0.06) (P = 0.03, P = 0.001, respectively), in HAM/TSP was higher than ACs (P = 0.1), but did not meet a 95% confidence interval. Conclusion The study showed that HTLV-1-PVL and Tax, along with host IRF-1, could be considered biomarkers in HAM/TSP development. Furthermore, IRF-1, as an essential transcription factor, can be considered a pivotal target in HAM/TSPs treatment.


Assuntos
Ciclina A2 , Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Fator Regulador 1 de Interferon , Paraparesia Espástica Tropical , Proteínas dos Retroviridae , Fatores de Transcrição de Zíper de Leucina Básica/genética , Coevolução Biológica , Ciclina A2/genética , Genes pX , Infecções por HTLV-I/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Fator Regulador 1 de Interferon/genética , Paraparesia Espástica Tropical/genética , Paraparesia Espástica Tropical/virologia , Provírus/genética , Proteínas dos Retroviridae/genética , Carga Viral
7.
Front Immunol ; 13: 940131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812456

RESUMO

Human T cell leukemia virus-1 (HTLV-1) is the causative agent of a severe cancer of the lymphoid lineage that develops in 3-5% of infected individuals after many years. HTLV-1 infection may also induce a serious inflammatory pathology of the nervous system designated HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Two virus-encoded proteins, the viral transactivator Tax-1 and the HTLV-1 basic leucine-zipper factor HBZ, are strongly involved in the oncogenic process. Tax-1 is involved in initial phases of the oncogenic process. Conversely, HBZ seems to be involved in maintenance of the neoplastic state as witnessed by the generation of leukemic/lymphomatous phenotype in HBZ transgenic mice and the persistent expression of HBZ in all phases of the oncogenic process. Nevertheless, the intimate molecular and cellular mechanism mediated by the two viral proteins, particularly HBZ, in oncogenesis still remain elusive. An important step toward the complete comprehension of HBZ-associated oncogenicity is the clarification of the anatomical correlates of HBZ during the various phases of HTLV-1 infection to development of HTLV-1-associated inflammatory pathology and ultimately to the establishment of leukemia. In this review, I will summarize recent studies that have established for the first time a temporal and unidirectional expression of HBZ, beginning with an exclusive cytoplasmic localization in infected asymptomatic individuals and in HAM/TSP patients and ending to a progressive cytoplasmic-to-nuclear transition in leukemic cells. These results are framed within the present knowledge of HTLV-1 infection and the future lines of research that may shed new light on the complex mechanism of HTLV-1- mediated oncogenesis.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia , Paraparesia Espástica Tropical , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Carcinogênese , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Camundongos , Paraparesia Espástica Tropical/genética , Proteínas dos Retroviridae/genética , Proteínas dos Retroviridae/metabolismo , Proteínas Virais/genética
8.
Front Immunol ; 13: 875211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572593

RESUMO

Exogenous retroviruses such as human immunodeficiency virus type 1 (HIV-1), human T-cell leukemia virus type 1 (HTLV-1) and bovine leukemia virus (BLV) can cause various diseases including immunodeficiency, inflammatory diseases and hematologic malignancies. These retroviruses persistently infect their hosts. Therefore, they need to evade host immune surveillance. One way in which these viruses might avoid immune detection is to utilize functional RNAs, rather than proteins, for certain activities, because RNAs are not recognized by the host immune system. HTLV-1 encodes the HTLV-1 bZIP factor (HBZ) gene in the antisense strand of the provirus. The HBZ protein is constantly expressed in HTLV-1 carriers and patients with adult T-cell leukemia-lymphoma, and it plays critical roles in pathogenesis. However, HBZ not only encodes this protein, but also functions as mRNA. Thus, HBZ gene mRNA is bifunctional. HIV-1 and BLV also encode long non-coding RNAs as antisense transcripts. In this review, we reshape our current understanding of how these antisense transcripts function and how they influence disease pathogenesis.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Fatores de Transcrição de Zíper de Leucina Básica/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , RNA Mensageiro , Proteínas dos Retroviridae/genética , Proteínas dos Retroviridae/metabolismo
9.
Biosci Rep ; 42(3)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35169839

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) is the only identified oncogenic human retrovirus. HTLV-1 infects approximately 5-10 million people worldwide and is the infectious cause of adult T-cell leukemia/lymphoma (ATL) and several chronic inflammatory diseases, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), dermatitis, and uveitis. Unlike other oncogenic retroviruses, HTLV-1 does not capture a cellular proto-oncogene or induce proviral insertional mutagenesis. HTLV-1 is a trans-activating retrovirus and encodes accessory proteins that induce cellular transformation over an extended period of time, upwards of several years to decades. Inarguably the most important viral accessory protein involved in transformation is Tax. Tax is a multifunctional protein that regulates several different pathways and cellular processes. This single viral protein is able to modulate viral gene expression, activate NF-κB signaling pathways, deregulate the cell cycle, disrupt apoptosis, and induce genomic instability. The summation of these processes results in cellular transformation and virus-mediated oncogenesis. Interestingly, HTLV-1 also encodes a protein called Hbz from the antisense strand of the proviral genome that counters many Tax functions in the infected cell, such as Tax-mediated viral transcription and NF-κB activation. However, Hbz also promotes cellular proliferation, inhibits apoptosis, and disrupts genomic integrity. In addition to viral proteins, there are other cellular factors such as MEF-2, superoxide-generating NAPDH oxidase 5-α (Nox5α), and PDLIM2 which have been shown to be critical for HTLV-1-mediated T-cell transformation. This review will highlight the important viral and cellular factors involved in HTLV-1 transformation and the available in vitro and in vivo tools used to study this complex process.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical , Adulto , Fatores de Transcrição de Zíper de Leucina Básica/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Proteínas com Domínio LIM , Proteínas dos Microfilamentos , NF-kappa B/genética , Proteínas dos Retroviridae/genética , Proteínas dos Retroviridae/metabolismo , Proteínas Virais
10.
Viruses ; 14(1)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35062304

RESUMO

Viruses are a possible cause for Sjögren's syndrome (SS) as an environmental factor related to SS onset, which exhibits exocrine gland dysfunction and the emergence of autoantibodies. Although retroviruses may exhibit lymphocytic infiltration into exocrine glands, human T-cell leukemia virus type 1 (HTLV-1) has been postulated to be a causative agent for SS. Transgenic mice with HTLV-1 genes showed sialadenitis resembling SS, but their phenotypic symptoms differed based on the adopted region of HTLV-1 genes. The dominance of tax gene differed in labial salivary glands (LSGs) of SS patients with HTLV 1-associated myelopathy (HAM) and adult T-cell leukemia. Although HTLV-1 was transmitted to salivary gland epithelial cells (SGECs) by a biofilm-like structure, no viral synapse formation was observed. After infection to SGECs derived from SS patients, adhesion molecules and migration factors were time-dependently released from infected SGECs. The frequency of the appearance of autoantibodies including anti-Ro/SS-A, La/SS-B antibodies in SS patients complicated with HAM is unknown; the observation of less frequent ectopic germinal center formation in HTLV-1-seropositive SS patients was a breakthrough. In addition, HTLV-1 infected cells inhibited B-lymphocyte activating factor or C-X-C motif chemokine 13 through direct contact with established follicular dendritic cell-like cells. These findings show that HTLV-1 is directly involved in the pathogenesis of SS.


Assuntos
Infecções por HTLV-I , Síndrome de Sjogren/virologia , Animais , Autoanticorpos/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Genes Virais , Infecções por HTLV-I/complicações , Infecções por HTLV-I/epidemiologia , Infecções por HTLV-I/imunologia , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Linfócitos/virologia , Camundongos , Camundongos Transgênicos , Paraparesia Espástica Tropical/complicações , Paraparesia Espástica Tropical/epidemiologia , Paraparesia Espástica Tropical/imunologia , Paraparesia Espástica Tropical/virologia , Fenótipo , Ratos , Proteínas dos Retroviridae/genética , Proteínas dos Retroviridae/metabolismo , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia , Síndrome de Sjogren/epidemiologia , Síndrome de Sjogren/imunologia
11.
Viruses ; 13(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34835027

RESUMO

Paradigm shifts throughout the history of microbiology have typically been ignored, or met with skepticism and resistance, by the scientific community. This has been especially true in the field of virology, where the discovery of a "contagium vivum fluidum", or infectious fluid remaining after excluding bacteria by filtration, was initially ignored because it did not coincide with the established view of microorganisms. Subsequent studies on such infectious agents, eventually termed "viruses", were met with skepticism. However, after an abundance of proof accumulated, viruses were eventually acknowledged as defined microbiological entities. Next, the proposed role of viruses in oncogenesis in animals was disputed, as was the unique mechanism of genome replication by reverse transcription of RNA by the retroviruses. This same pattern of skepticism holds true for the prediction of the existence of retroviral "antisense" transcripts and genes. From the time of their discovery, it was thought that retroviruses encoded proteins on only one strand of proviral DNA. However, in 1988, it was predicted that human immunodeficiency virus type 1 (HIV-1), and other retroviruses, express an antisense protein encoded on the DNA strand opposite that encoding the known viral proteins. Confirmation came quickly with the characterization of the antisense protein, HBZ, of the human T-cell leukemia virus type 1 (HTLV-1), and the finding that both the protein and its antisense mRNA transcript play key roles in viral replication and pathogenesis. However, acceptance of the existence, and potential importance, of a corresponding antisense transcript and protein (ASP) in HIV-1 infection and pathogenesis has lagged, despite gradually accumulating theoretical and experimental evidence. The most striking theoretical evidence is the finding that asp is highly conserved in group M viruses and correlates exclusively with subtypes, or clades, responsible for the AIDS pandemic. This review outlines the history of the major shifts in thought pertaining to the nature and characteristics of viruses, and in particular retroviruses, and details the development of the hypothesis that retroviral antisense transcripts and genes exist. We conclude that there is a need to accelerate studies on ASP, and its transcript(s), with the view that both may be important, and overlooked, targets in anti-HIV therapeutic and vaccine strategies.


Assuntos
RNA Antissenso/genética , RNA Mensageiro/genética , Proteínas dos Retroviridae/genética , Retroviridae/genética , Carcinogênese/genética , Genoma Viral , HIV-1/genética , HIV-1/patogenicidade , HIV-1/fisiologia , História do Século XX , História do Século XXI , Proteínas do Vírus da Imunodeficiência Humana/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Fases de Leitura Aberta , Retroviridae/patogenicidade , Retroviridae/fisiologia , Transcrição Gênica , Proteínas do Envelope Viral/genética , Virologia/história , Replicação Viral
12.
Viruses ; 13(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452297

RESUMO

Antisense protein of Human T-cell Leukemia Virus Type 2 (HTLV-2), also called APH-2, negatively regulates the HTLV-2 and helps the virus to maintain latency via scheming the transcription. Despite the remarkable occurrence of HTLV-2/HIV-1 co-infection, the role of APH-2 influencing HIV-1 replication kinetics is poorly understood and needs investigation. In this study, we investigated the plausible role of APH-2 regulating HIV-1 replication. Herein, we report that the overexpression of APH-2 not only hampered the release of HIV-1 pNL4.3 from 293T cells in a dose-dependent manner but also affected the cellular gag expression. A similar and consistent effect of APH-2 overexpression was also observed in case of HIV-1 gag expression vector HXB2 pGag-EGFP. APH-2 overexpression also inhibited the ability of HIV-1 Tat to transactivate the HIV-1 LTR-driven expression of luciferase. Furthermore, the introduction of mutations in the IXXLL motif at the N-terminal domain of APH-2 reverted the inhibitory effect on HIV-1 Tat-mediated transcription, suggesting the possible role of this motif towards the downregulation of Tat-mediated transactivation. Overall, these findings indicate that the HTLV-2 APH-2 may affect the HIV-1 replication at multiple levels by (a) inhibiting the Tat-mediated transactivation and (b) hampering the virus release by affecting the cellular gag expression.


Assuntos
HIV-1/fisiologia , Vírus Linfotrópico T Tipo 2 Humano/genética , Proteínas dos Retroviridae/metabolismo , Replicação Viral , Linhagem Celular , Regulação Viral da Expressão Gênica , Células HEK293 , HIV-1/genética , Humanos , Proteínas dos Retroviridae/química , Proteínas dos Retroviridae/genética , Ativação Transcricional , Liberação de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
13.
Viruses ; 13(3)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803830

RESUMO

Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans. They are apathogenic, and significant differences exist between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV biology, host restriction factors, and FV-host interactions with an emphasis on the consequences of FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies.


Assuntos
Desaminases APOBEC/metabolismo , Interações entre Hospedeiro e Microrganismos , Proteínas dos Retroviridae/metabolismo , Spumavirus/genética , Spumavirus/fisiologia , Animais , Linhagem Celular , Humanos , Mutação , Primatas/virologia , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia , Proteínas dos Retroviridae/classificação , Proteínas dos Retroviridae/genética , Spumavirus/imunologia
14.
J Med Virol ; 93(11): 6418-6423, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33835501

RESUMO

The human T-cell lymphotropic virus type-1 (HTLV-1) is associated with severe pathologies, such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), adult T-cell leukemia-lymphoma (ATLL), and infective dermatitis associated with the HTLV-1 (IDH). Interestingly, HTLV-1 infection does not necessarily imply the development of pathological processes and it is unknown why some patients remain asymptomatic carriers (AC). Despite some mutations in the HTLV-1 genome appear to influence the outcome of HTLV-1, there are few studies that characterize molecularly the hbz region. This study aimed to perform the molecular characterization of hbz gene isolated from patients with different clinical outcomes. A total of 15 sequences were generated and analyzed with 571 sequences previously published. The analises showed that the R119Q mutation seems to be related to HTLV-1 clinical conditions since the frequency of this HBZ mutation is significantly different in comparison between AC with HAM/TSP and ATLL. The R119Q mutation is possibly a protective factor as the frequency is higher in AC sequences.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Variação Genética , Genoma Viral , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Mutação , Proteínas dos Retroviridae/genética , Adulto , Genômica , Infecções por HTLV-I/sangue , Infecções por HTLV-I/classificação , Humanos , Leucócitos Mononucleares/virologia , Paraparesia Espástica Tropical/virologia , Carga Viral
15.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875584

RESUMO

Human retroviruses, including human T cell leukemia virus type 1 (HTLV-1) and HIV type 1 (HIV-1), encode an antisense gene in the negative strand of the provirus. Besides coding for proteins, the messenger RNAs (mRNAs) of retroviral antisense genes have also been found to regulate transcription directly. Thus, it has been proposed that retroviruses likely localize their antisense mRNAs to the nucleus in order to regulate nuclear events; however, this opposes the coding function of retroviral antisense mRNAs that requires a cytoplasmic localization for protein translation. Here, we provide direct evidence that retroviral antisense mRNAs are localized predominantly in the nuclei of infected cells. The retroviral 3' LTR induces inefficient polyadenylation and nuclear retention of antisense mRNA. We further reveal that retroviral antisense RNAs retained in the nucleus associate with chromatin and have transcriptional regulatory function. While HTLV-1 antisense mRNA is recruited to the promoter of C-C chemokine receptor type 4 (CCR4) and enhances transcription from it to support the proliferation of HTLV-1-infected cells, HIV-1 antisense mRNA is recruited to the viral LTR and inhibits sense mRNA expression to maintain the latency of HIV-1 infection. In summary, retroviral antisense mRNAs are retained in nucleus, act like long noncoding RNAs instead of mRNAs, and contribute to viral persistence.


Assuntos
HIV-1/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Latência Viral/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Expressão Gênica/genética , Regulação Viral da Expressão Gênica/genética , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , Provírus/genética , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/genética , Proteínas dos Retroviridae/genética , Proteínas dos Retroviridae/metabolismo , Sequências Repetidas Terminais/genética , Transcrição Gênica/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/genética
16.
Cancer Sci ; 112(5): 1688-1694, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33630351

RESUMO

Adult T-cell leukemia-lymphoma (ATL) is caused by human T-cell leukemia virus type 1 (HTLV-1) infection. Among HTLV-1 encoded genes, HTLV-1 bZIP factor (HBZ) and tax are critical for the leukemogenesis of ATL. Adult T-cell leukemia-lymphoma needs a long latent period before onset, indicating that both viral genes and alterations (genetic and epigenetic) of the host genome play important roles for leukemogenesis. Viral genes influence genetic and epigenetic changes of the host genome, indicating that the virus is of primary importance in leukemogenesis. HBZ is expressed in all ATL cases, whereas Tax expression is heterogeneous among ATL cases. Different patterns of viral gene expression in tumors are also observed for Epstein-Barr virus. We propose three subtypes of ATL cases based on Tax expression: high, intermittent, and lost expression. HBZ is detected in all ATL cases. Approximately 25% of all ATL cases lost Tax expression at infection of HTLV-1, indicating that HBZ is the only viral gene responsible for leukemogenesis in addition to genetic and epigenetic changes of the host genes in these ATL cases. The host immune responses to Tax are also implicated in the heterogeneity of ATL. Thus, ATL is a heterogeneous disease in terms of its viral gene expression, which is important for pathogenesis of this intractable lymphomatous neoplasm.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Produtos do Gene tax/genética , Herpesvirus Humano 4/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Leucemia-Linfoma de Células T do Adulto/virologia , Proteínas dos Retroviridae/genética , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Linfócitos B/virologia , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proliferação de Células , Transformação Celular Viral , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Leucêmica da Expressão Gênica , Regulação Viral da Expressão Gênica , Produtos do Gene tax/imunologia , Produtos do Gene tax/metabolismo , Humanos , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/imunologia , Leucemia-Linfoma de Células T do Adulto/metabolismo , Camundongos , Camundongos Transgênicos , RNA Viral/genética , Proteínas dos Retroviridae/imunologia , Proteínas dos Retroviridae/metabolismo , Linfócitos T Reguladores/virologia , Replicação Viral/genética
17.
Haematologica ; 106(8): 2076-2085, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33626865

RESUMO

Adult T-cell leukemia-lymphoma (ATL), is a highly malignant T-cell neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1), characterized by a poor prognosis. Two viral proteins, Tax-1 and HBZ play important roles in the pathogenesis of ATL. While Tax-1 can be found in both cytoplasm and nucleus of HTLV-1 infected patients, HBZ is exclusively localized in the cytoplasm of HTLV-1 asymptomatic carriers and patients with chronic neurologic disease HAM/TSP, and only in the nucleus of ATL cell lines, suggesting that the nuclear localization of HBZ can be a hallmark of neoplastic transformation. To clarify this crucial point, here we investigated in detail the pattern of HBZ expression in ATL patients. We made use of our monoclonal antibody 4D4-F3, that at present is a uniquely reported reagent, among the few described, able to detect endogenous HBZ by immunofluorescence and confocal microscopy in cells from asymptomatic carriers, HAM/TSP and ATL patients. We found that HBZ localizes both in the cytoplasm and in the nucleus of cells of ATL patients irrespective of their clinical status, with a strong preference for the cytoplasmic localization. Also Tax-1 localized in both compartments. As HBZ is exclusively localized in the cytoplasm in asymptomatic carriers and in non-neoplastic pathologies, this finding shows that neoplastic transformation consequent to HTLV-1 infection is accompanied and associated with the capacity of HBZ to translocate to the nucleus, which suggests a role of cytoplasmic-to-nuclear translocation in HTLV-1-mediated oncogenesis.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Fatores de Transcrição de Zíper de Leucina Básica/genética , Citoplasma , Produtos do Gene tax/genética , Humanos , Leucemia-Linfoma de Células T do Adulto/genética , Proteínas dos Retroviridae/genética , Proteínas Virais
18.
PLoS Pathog ; 17(1): e1009219, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471856

RESUMO

Adult T cell leukemia (ATL) is an aggressive malignancy secondary to chronic infection by the human T-cell leukemia virus type 1 (HTLV-1) infection. Two viral proteins, Tax and HBZ, play central roles in ATL leukemogenesis. Tax expression transforms T cells in vitro and induces ATL-like disease in mice. Tax also induces a rough eye phenotype and increases hemocyte count in Drosophila melanogaster, indicative of transformation. Among multiple functions, Tax modulates the expression of the enhancer of zeste homolog 2 (EZH2), a methyltransferase of the Polycomb Repressive Complex 2 (PRC2), leading to H3K27me3-dependent reprogramming of around half of cellular genes. HBZ is a negative regulator of Tax-mediated viral transcription. HBZ effects on epigenetic signatures are underexplored. Here, we established an hbz transgenic fly model, and demonstrated that, unlike Tax, which induces NF-κB activation and enhanced PRC2 activity creating an activation loop, HBZ neither induces transformation nor NF-κB activation in vivo. However, overexpression of Tax or HBZ increases the PRC2 activity and both proteins directly interact with PRC2 complex core components. Importantly, overexpression of HBZ in tax transgenic flies prevents Tax-induced NF-κB or PRC2 activation and totally rescues Tax-induced transformation and senescence. Our results establish the in vivo antagonistic effect of HBZ on Tax-induced transformation and cellular effects. This study helps understanding long-term HTLV-1 persistence and cellular transformation and opens perspectives for new therapeutic strategies targeting the epigenetic machinery in ATL.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Senescência Celular , Regulação Viral da Expressão Gênica , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Proteínas dos Retroviridae/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Drosophila melanogaster , Produtos do Gene tax/genética , Infecções por HTLV-I/genética , Infecções por HTLV-I/metabolismo , Infecções por HTLV-I/patologia , Células HeLa , Humanos , Proteínas dos Retroviridae/genética
19.
J Cell Physiol ; 236(4): 2756-2766, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32893878

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that causes adult T-cell leukemia (ATL). The viral protein HTLV-1 basic leucine-zipper factor (HBZ), which is constitutively expressed in all ATL patient cells, contributes toward the development of ATL; however, the underlying mechanism has not been elucidated yet. Here, we identified HS-1-associated protein X-1 (HAX-1) as a novel binding partner of HBZ. Interestingly, HAX-1 specifically associated with HBZ-US, but not HBZ-SI, in the cytoplasm. HBZ suppressed the polyubiquitination levels of HAX-1 protein by inhibiting the association HAX-1 with F-box protein 25 (FBXO25), which is a member of the SCF E3 ubiquitin ligase complex, and promoted the stabilization of HAX-1 levels. In fact, the protein levels of HAX-1 were significantly increased in HTLV-1 infected and the overexpressing HBZ in uninfected T-cell lines. Enhanced HAX-1 correlated well to suppression of caspase 9 processing, suggesting that HBZ may contribute to the enhancement of antiapoptotic function for HAX-1. Our results revealed a role for HBZ on HAX-1 stabilization by abrogating the ubiquitination-mediated degradation pathway, which may play an important role in understanding the potential mechanisms of HTLV-1 related pathogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Proteínas dos Retroviridae/metabolismo , Linfócitos T/metabolismo , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Caspase 9/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Células Jurkat , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteólise , Proteínas dos Retroviridae/genética , Linfócitos T/virologia , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...